Role of TFIIIA zinc fingers in vivo: analysis of single-finger function in developing Xenopus embryos.
نویسندگان
چکیده
The Xenopus 5S RNA gene-specific transcription factor IIIA (TFIIIA) has nine consecutive Cys2His2 zinc finger motifs. Studies were conducted in vivo to determine the contribution of each of the nine zinc fingers to the activity of TFIIIA in living cells. Nine separate TFIIIA mutants were expressed in Xenopus embryos following microinjection of their respective in vitro-derived mRNAs. Each mutant contained a single histidine-to-asparagine substitution in the third zinc ligand position of an individual zinc finger. These mutations result in structural disruption of the mutated finger with little or no effect on the other fingers. The activity of mutant proteins in vivo was assessed by measuring transcriptional activation of the endogenous 5S RNA genes. Mutants containing a substitution in zinc finger 1, 2, or 3 activate 5S RNA genes at a level which is reduced relative to that in embryos injected with the message for wild-type TFIIIA. Proteins with a histidine-to-asparagine substitution in zinc finger 5 or 7 activate 5S RNA genes at a level that is roughly equivalent to that of the wild-type protein. Zinc fingers 8 and 9 appear to be critical for the normal function of TFIIIA, since mutations in these fingers result in little or no activation of the endogenous 5S RNA genes. Surprisingly, proteins with a mutation in zinc finger 4 or 6 stimulate 5S RNA transcription at a level that is significantly higher than that mediated by similar concentrations of wild-type TFIIIA. Differences in the amount of newly synthesized 5S RNA in embryos containing the various mutant forms of TFIIIA result from differences in the relative number and/or activity of transcription complexes assembled on the endogenous 5S RNA genes and, in the case of the finger 4 and finger 6 mutants, result from increased transcriptional activation of the normally inactive oocyte-type 5S RNA genes. The remarkably high activity of the finger 6 mutant can be reproduced in vitro when transcription is carried out in the presence of 5S RNA. Disruption of zinc finger 6 results in a form of TFIIIA that exhibits reduced susceptibility to feedback inhibition by 5S RNA and therefore increases the availability of the transcription factor for transcription complex formation.
منابع مشابه
Sequence variation in transcription factor IIIA.
Previous studies characterized macromolecular differences between Xenopus and Rana transcription factor IIIA (TFIIIA) (Gaskins et al., 1989, Nucl. Acids Res. 17, 781-794). In the present study, cDNAs for TFIIIA from Xenopus borealis and Rana catesbeiana (American bullfrog) were cloned and sequenced in order to gain molecular insight into the structure, function, and species variation of TFIIIA ...
متن کاملThe role of zinc finger linkers in p43 and TFIIIA binding to 5S rRNA and DNA.
Transcription factor IIIA (TFIIIA) and p43 zinc finger protein form distinct complexes with 5S ribosomal RNA in Xenopus oocytes. Additionally, TFIIIA binds the internal promoter of the 5S RNA gene and supports assembly of a transcription initiation complex. Both proteins have nine tandemly repeated zinc fingers with almost identical linker lengths between corresponding fingers, yet p43 has no d...
متن کاملZinc fingers 1 and 7 of yeast TFIIIA are essential for assembly of a functional transcription complex on the 5 S RNA gene
The binding of transcription factor (TF) IIIA to the internal control region of the 5 S RNA gene is the first step in the assembly of a DNA-TFIIIA-TFIIIC- TFIIIB transcription complex, which promotes accurate transcription by RNA polymerase III. With the use of mutations that are predicted to disrupt the folding of a zinc finger, we have examined the roles of zinc fingers 1 through 7 of yeast T...
متن کاملInhibition of transcription factor IIIA-DNA interactions by xenobiotic metal ions.
Transcription factor IIIA (TFIIIA), a cysteine-rich regulatory protein, is the prototype for the largest known superfamily of eukaryotic transcription factors. Members of the TFIIIA superfamily contain Cys2His2 zinc finger domains responsible for nucleic acid binding. Xenobiotic metal ions, which lack known biological function, were previously used as probes for the structure and function of st...
متن کاملDiffering roles for zinc fingers in DNA recognition: structure of a six-finger transcription factor IIIA complex.
The crystal structure of the six NH2-terminal zinc fingers of Xenopus laevis transcription factor IIIA (TFIIIA) bound with 31 bp of the 5S rRNA gene promoter has been determined at 3.1 A resolution. Individual zinc fingers are positioned differently in the major groove and across the minor groove of DNA to span the entire length of the duplex. These results show how TFIIIA can recognize several...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 13 8 شماره
صفحات -
تاریخ انتشار 1993